

Page 1 of 7

Brief Discussion:

Fig.UW-13.2 Non-Permissible heads, ASME VIII-1, by Finite Element Analysis

Prepared by: Michael Rodgers, P.Eng. Date: July 16, 2010

Key Design Engineering is a Canadian engineering firm located in Waterloo, Ontario, that specializes in ASME Code calculations and Canadian Registration Number (CRN) submissions:

- <u>ASME Code Calculations</u> per ASME VIII-1 & ASME B31.3 for Pressure Vessels, Fittings, & Piping systems as applicable.
- <u>Canadian Registration Number (CRN)</u>: preparation of documentation for submission of pressure vessels, fittings, or pressure piping for registration in one Jurisdiction or Canada-wide.
- <u>Finite Element Analysis (FEA)</u> of Pressure Vessels and Fittings in accordance with ASME VIII-2, in compliance with Jurisdictional requirements.

Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

Page 2 of 7

Summary:

Finite Element Analysis (FEA) is used to investigate reasons why ASME VIII-1, FIG.UW-13.2, does not permit certain joint configurations for the attachment of welded unstayed flat heads:

- 1. <u>Joint Orientation</u>: The eccentrically attached weld allows the joint to open under pressure.
- 2. **Fatigue Life**: The peak stress created at the weld root limits the fatigue life.
- 3. <u>Weld size</u>: The weld size is insufficient to satisfy the Code's geometric requirements.

Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

Page 3 of 7

Introduction:

ASME VIII-1 lists various examples of permissible flat welded-head configurations in Fig.UG-34 & Fig.UW-13.2. Why are the following three joints listed as "Non-Permissible" in Fig.UW-13.2?

Figure UW-13.2

Approach:

The three non-permissible configurations presented in Fig.UW-13.2 are analyzed: o, p, & q. For comparison, an analysis is also performed on Fig.UG-34(e), which is permissible.

General Setup:

Code of Construction:	ASME VIII-1, 2007ed, 2009b
Design Conditions:	1,000 psi @ 650F
Material:	Shell: SA-312 TP304
	Flat head: SA-240 304
Corrosion Allowance:	N/A
Mesh Error:	Max 5%, per ABSA guideline
FEA Interpretation:	ASME VIII-2, 2007, Part 5
E (weld quality)	1.0, per table UW-12, corner joint
Thicknesses	Head and shell thicknesses sized per Classical
	Calculations, attached to this discussion.

Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

Page 4 of 7

Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

Page 5 of 7

Referring to the preceding results, note the following:

-For the *Resultant Displacement* plots, the colour display has been capped at 2.076e-002 in. for comparison between the three configurations.

-The *Resultant Displacement* plots above are shown deformed at a scale of 100x, but both the *Axial* and *Radial displacement* plots are shown undeformed. -For the *Von Mises Stress Plots*, the colour display has been capped at the allowable stress for stainless SA-240 304 @ 650F, which also corresponds to Pm, the membrane allowable stress.

> Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

Page 6 of 7

Results: Permissible Configuration

An analysis is run for the unstayed flat-head of FIG.UG-34(e), using the same design conditions.

Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

Observations:

It is immediately clear that for the two Nonpermissible cases (o) & (p), there isn't sufficient weld to satisfy the geometric requirement of the Code (VIII-1 UW-13(e)(5)). Also, the Radial Displacement Plot for case (o) shows a hinge developing at the weld's root, which makes it vulnerable to fatigue failure. However, the Resultant Displacement plots for cases (p) & (q) highlight the main underlying problem with these configurations. It is the weld's eccentricity relative to the main pressure-retaining component, the shell. In a permissible joint, a flat head will normally cause a moment to form in its attached shell, as can be observed in case (e) from Fig. UG-34 above. What sets these two cases apart is that the deformation causes an opening up of the joint. Rather than it being a self-limiting effect, such as relieves local peak stresses, it has a ratcheting effect that leads to premature failure under cyclic loading. In contrast, the permissible joint investigated has very low deflection both at the centre of the head and through the weld. While it also displays a peak stress at the weld root, the joint remains closed and any plasticity will be local to relieve the geometric stress concentrations at that point. The fatigue-life of the joint is greatly affected by the weld finish quality, but even this theoretical treatment shows that configuration (p) most severely limits the expected life cycles. An additional practical consideration is crevice corrosion, which could seriously impact stainless steel in configurations (p) & (q).

Additional References:

- A. ASME VIII-1, UW-13 (e)(5) speaks to the reasons for these joints being nonpermissible:
 - Weld Size: The total weld dimension through the joint (throat) is less than the thickness of the pressure part to which it is attached, whether it be the shell, head or other component.
 - Eccentricity: The weld creates a joint that is attached eccentric to the pressure part.

B. Compress Calculations per ASME VIII-1, 2007 ed, 2009b for UG-34(e) unstayed flat-head. It was used for determining head and shell thickness.

Key Design Engineering 55 Northfield Dr. E, Suite 194 Waterloo, ON N2K 3T6 http://www.keydesigneng.com/

ASME Section VIII Division 1, 2007 Edition, A09 Addenda

Compone Material s Rated MD	nt: pecifi MT p	ication: ber UHA-51(d)(1)(a) = -320 °F	Welded Cover SA-240 304 (II-D p. 90, In. 4)
Internal de External d	esign lesigr	pressure: P = 1000 psi @ 650 °F n pressure: P _e = 15 psi @ 650 °F	-
Corrosion	allov	vance: Inner C = 0"	Outer C = 0"
Design MI Rated MD	DMT)MT =	= -20 °F = -320 °F	No impact test performed Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed
Radiograp	ohy:	Category A joints -	Seamless No RT
Estimated	l weig	ht: New = 394.9 lb	corr = 394.9 lb
Head diar Cover thic Factor C t	meter cknes from	r, d = 24" ss, t = 3.01" Fig. UG-34, sketch (b-2), (e thro	bugh g)
С	= = =	0.33*t _r / t _s 0.33*0.7692 / 1 0.2538	
Design th	nickn	ess, (at 650 °F) UG-34 (c)(2)	
t	= = =	d*Sqr(C*P / (S*E)) + Corrosion 24*Sqr(0.2538*1,000 / (16,200*1 3.004")) + 0
Maximum	ı allo	wable working pressure, (at 650)°F)
С	= = =	0.33*t _r / t _s 0.33*0.7708 / 1 0.2544	
MAWP	= = =	(S*E / C)*(t / d) ² - P _s (16,200*1 / 0.2543645)*(3.01 / 2 1,001.91 psi	4) ² - 0
Maximum	n allo	wable pressure, (At 70 $^\circ$ F)	
С	= = =	0.33*t _r / t _s 0.33*0.7708 / 1 0.2544	
MAP	= = =	(S*E / C)*(t / d)² (20,000*1 / 0.2543645)*(3.01 / 2 1,236.93 psi	4) ²

Design thickness for external pressure, (at 650 °F) UG-34(c)(2)

- =
- $\begin{array}{l} d^{*}Sqr(C^{*}P_{e} \ / \ (S^{*}E)) \ + \ Corrosion \\ 24^{*}Sqr(0.33^{*}15 \ / \ (16,200^{*}1)) \ + \ 0 \end{array}$ =
 - 0.4195" =

Maximum allowable external pressure, (At 650 °F)

(S*E / C)*(t / d)² MAEP =

t

- (16,200*1 / 0.33)*(3.01 / 24)2 =
- 772.17 psi =

ASME Section VIII Division 1, 2007 Edition, A09 Addenda

 $t_{w(lower)} = 1$ in Leg₄₁ = 0.375 in

Note: round inside edges per UG-76(c)

.

Located on:	Cylinder #1
Liquid static head included:	0 psi
Nozzle material specification:	SA-312 TP304 Wld & smls pipe (II-D p. 90, In. 15)
Nozzle longitudinal joint efficiency:	1
Nozzle description:	24" (Thk = 1.000")
Nozzle orientation:	0°
Local vessel minimum thickness:	0.875 in
Nozzle center line offset to datum line:	50 in
End of nozzle to shell center:	40 in
Nozzle inside diameter, new:	22 in
Nozzle nominal wall thickness:	1 in
Nozzle corrosion allowance:	0 in
Projection available outside vessel, Lpr:	28 in

Note: Nozzle is outside of scope of Appendix 1-7 as $R_n / R > 0.7$. Appendix 1-10 or Division 2 Part 4.5 was used for the U-2(g) large opening analysis.

This nozzle passes through a Category A joint.

Reinforcement Calculations for Internal Pressure

Available reinforcement per Appendix 1-10 governs the MAWP of this nozzle.

Aŗ	opendix I The o	1-10 Max Membra For P = 710.4 pening is ac	timum I Ine Stre 18 psi @ 65 lequately r	Local SS 50 ° F reinforce	Prima d	iry	UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
P _L (psi)	PL (psi)Sallow (psi)A1 (in2)A2 (in2)A3 (in2)A5 (in2)A welds 						t _{req} (in)	t _{min} (in)
<u>20,655</u>	<u>20,655</u>	<u>7.8721</u>	<u>3.462</u>			0.0703	<u>0.4955</u>	0.875

Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Weld								
ky	L _τ (in)	L _{41T} (in)	L _{42T} (in)	L _{43T} (in)	f _{welds} (Ib _f)	τ (psi)	S (psi)	Over stressed
1.0909	<u>18.8496</u>	0.2652	0	0	84,125.81	<u>6.814</u>	16,200	No

UW-16 Weld Sizing Summary						
Weld description Required weld throat size (in) Actual weld throat size (in) Status						
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate			

Calculations for internal pressure 710.48 psi @ 650 °F

Nozzle rated MDMT per UHA-51(d)(1)(a) = -320 °F.

Appendix 1-10

Effective radius of the vessel

R_{eff}	=	0.5*D _i
0	=	0.5*22
	_	11 in

= 11 in

Limit of reinforcement along the vessel wall

L _B	=	8*t
	=	8*0.875
	=	7 in

Limit of reinforcement along the nozzle wall projecting outside the vessel surface

L _{H1}	= = =	t + 0.78*(R _n *t _n) ^{0.5} 0.875 + 0.78*(11*1) ^{0.5} 3.462 in
L _{H2}	= = =	L _{pr1} + t 28 + 0.875 28.875 in
L _{H3}	= = =	8*(t + t _e) 8*(0.875 + 0) 7 in
L _H	= = =	min[L _{H1} , L _{H2} , L _{H3}] min[3.462, 28.875, 7] 3.462 in

Effective thickness

t_{eff} = t 0.875 in =

Total available area near the nozzle opening

- $\begin{array}{l} min[~(2^{*}R_{n}+t_{n}) \ / \ ((D_{i}+t_{eff})^{*}t_{eff})^{0.5}, \ 10] \\ min[~(2^{*}11 \ + \ 1) \ / \ ((22 \ + \ 0.875)^{*}0.875)^{0.5}, \ 10] \end{array}$ λ = =
 - 5.1409 =
- $t^{*}L_{R}^{*}max[\;(\lambda \:/\:4)\;,\:1]$ A₁ =
 - 0.875*7*max[(5.1409 / 4) , 1] =
 - 0.875*7*1.2852 =
 - 7.8721 in² =
- A_2 =
- t_n*L_H 1*3.462 =
 - 3.462 in² =
- A_{41} 0.5*L₄₁² =
 - 0.5*0.3752 = 0.0703 in² =
- $\begin{array}{l} \mathsf{A}_1 + \mathsf{A}_2 + \mathsf{A}_{41} \\ 7.8721 + 3.462 + 0.0703 \end{array}$ Α_T =
 - =
 - 11.4044 in² =

Forces at nozzle to vessel intersection

 $= P^*R_n^*(L_H - t)$ f_N

- = 710.48*11*(3.462 0.875)
- = 20,218 lb_f
- $f_{S} = P^{*}R_{eff}^{*}(L_{R} + t_{n})$
 - = 710.48*11*(7 + 1)
 - = 62,522.64 lb_f
- $f_{Y} = P^* R_{eff}^* R_{nc}$
 - = 710.48*11*11
 - = 85,968.63 lb_f

Average local primary membrane stress

 $\sigma_{\text{avg}} = (f_{\text{N}} + f_{\text{S}} + f_{\text{Y}}) / A_{\text{T}}$ = (20,218 + 62,522.64 + 85,968.63) / 11.4044 = 14,793 psi

General primary membrane stress

 $\sigma_{circ} = P^*R_{eff} / t_{eff}$ $= 710.48^*11 / 0.875$ 0.000 = -i

= 8,932 psi

Maximum local primary membrane stress at the nozzle intersection

$$P_{L} = \max[\{2^{*}\sigma_{avg} - \sigma_{circ}\}, \sigma_{circ}]$$

- = max[{2*14,793 8,932} , 8,932]
- = <u>20,655</u> psi

Allowable stress

 $S_{allow} = 1.5^*S^*E$ = 1.5*16,200*0.85

= 20,655 psi

 $P_{L} = 20,655 \text{ psi} \le S_{\text{allow}} = 20,655 \text{ psi}$

satisfactory

Maximum allowable working pressure

 $\begin{array}{rcl} \mathsf{A}_{\mathsf{p}} & = & \mathsf{R}_{\mathsf{n}}^{\,*}(\mathsf{L}_{\mathsf{H}}^{\,} \cdot t) + \mathsf{R}_{\mathsf{eff}}^{\,*}(\mathsf{L}_{\mathsf{R}}^{\,} + t_{\mathsf{n}}^{\,} + \mathsf{R}_{\mathsf{nc}}^{\,}) \\ & = & (11^{*}(3.462 \cdot 0.875) + 11^{*}(7 + 1 + 11)) \\ & = & 237.4566 \ \mathsf{in}^{2} \end{array}$

 $\begin{array}{rcl} \mathsf{P}_{max1} = & \mathsf{S}_{allow} \: / \: (2^*\mathsf{A}_p \: / \: \mathsf{A}_T \: \mbox{--} \: \mathsf{R}_{eff} \: / \: t_{eff}) \\ &= & 20,655 \: / \: (2^*237.4566 \: / \: 11.4044 \: \mbox{--} \: 11 \: / \: 0.875) \\ &= & 710.4845 \: psi \end{array}$

P_{max2} = S*(t / R_{eff}) = 16,200*(0.875 / 11) = 1,288.636 psi

$P_{max} = \min[P_{max1}, P_{max2}] \\ = \min[710.48, 1,288.64]$

= 710.4845 psi

Division 2 Part 4.5 Strength of Nozzle Attachment Welds (U-2(g) analysis)

Discontinuity force factor

$$k_{y} = (R_{nc} + t_{n}) / R_{nc}$$

= (11 + 1) / 11
= 1.0909

Weld length resisting discontinuity force

 $\begin{array}{rcl} {L_\tau } & = & \pi \,/\, 2^* ({R_n} + {t_n}) \\ & = & \pi \,/\, 2^* (11 + 1) \\ & = & \underline{18.8496} \text{ in} \end{array}$

Weld throat dimensions

- $L_{41T} = 0.7071*L_{41}$
 - = 0.7071*0.375
 - = <u>0.2652</u> in

Average shear stress in weld

- $\begin{aligned} f_{\text{welds}} &= \min[f_{\text{Y}}^* k_{\text{y}}, 1.5^* \text{S}_n^* (\text{A}_2 + \text{A}_3)] \\ &= \min[85,968.63^* 1.0909, 1.5^* 16,200^* (3.462 + 0)] \end{aligned}$
 - = <u>84,125.81</u> lb_f
- $\begin{aligned} \tau &= f_{welds} / \left[L_{\tau}^{*}(0.49^{*}L_{41T} + 0.6^{*}t_{w1} + 0.49^{*}L_{43T}) \right] \\ &= 84,125.81 / \left[18.8496^{*}(0.49^{*}0.2652 + 0.6^{*}0.875 + 0.49^{*}0) \right] \\ &= \frac{6.814}{9} \text{ psi} \end{aligned}$

 $\tau = 6,814 \text{ psi} \le S = 16,200 \text{ psi}$

satisfactory

UW-16(c) Weld Check

 $\begin{array}{l} \mbox{Fillet weld: } t_{min} = \mbox{lesser of } 0.75 \mbox{ or } t_n \mbox{ or } t = 0.75 \mbox{ in } \\ t_{c(min)} = \mbox{lesser of } 0.25 \mbox{ or } 0.7^* t_{min} = \mbox{\underline{0.25}} \mbox{ in } \\ t_{c(actual)} = 0.7^* \mbox{Leg} = 0.7^* 0.375 = 0.2625 \mbox{ in } \end{array}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a):	$t_{r1} = 0.4955$ in (E =1)
Wall thickness per UG-45(b)(1):	t _{r2} = 0.5172 in
Wall thickness per UG-16(b):	t _{r3} = 0.0625 in
Standard wall pipe per UG-45(b)(4):	t _{r4} = 0.3281 in
The greater of t _{r2} or t _{r3} :	t _{r5} = 0.5172 in
The lesser of t _{r4} or t _{r5} :	t _{r6} = 0.3281 in

Required per UG-45 is the larger of t_{r1} or $t_{r6} = 0.4955$ in

Available nozzle wall thickness new, t_{n} = 0.875^{\ast}1 = 0.875 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

Available reinforcement per Appendix 1-10 governs the MAP of this nozzle.

Aŗ	Appendix 1-10 Maximum Local Primary Membrane Stress For P = 877.14 psi @ 70 °F The opening is adequately reinforced							UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
P _L (psi)	PL (psi)Sallow (psi)A1 (in2)A2 (in2)A3 (in2)A5 (in2)A welds (in2)						t _{req} (in)	t _{min} (in)	
<u>25,500</u>	<u>25,500</u>	<u>7.8721</u>	<u>3.462</u>			0.0703	<u>0.4955</u>	0.875	

Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Weld								
								Over stressed
<u>1.0909</u>	<u>18.8496</u>	0.2652	0	0	<u>103.859</u>	<u>8,413</u>	20,000	No

UW-16 Weld Sizing Summary				
Weld description Required weld throat size (in) Actual weld throat size (in) Status				
Nozzle to shell fillet (Leg ₄₁)	<u>0.25</u>	0.2625	weld size is adequate	

Calculations for internal pressure 877.14 psi @ 70 °F

Nozzle rated MDMT per UHA-51(d)(1)(a) = -320 °F.

Appendix 1-10

Effective radius of the vessel

R_{eff}	=	0.5*D _i
0	=	0.5*22
		11 in

= 11 in

Limit of reinforcement along the vessel wall

L _B	=	8*t
	=	8*0.875
	=	7 in

Limit of reinforcement along the nozzle wall projecting outside the vessel surface

L _{H1}	= = =	t + 0.78*(R _n *t _n) ^{0.5} 0.875 + 0.78*(11*1) ^{0.5} 3.462 in
L _{H2}	= = =	L _{pr1} + t 28 + 0.875 28.875 in
L _{H3}	= = =	8*(t + t _e) 8*(0.875 + 0) 7 in
L _H	= = =	min[L _{H1} , L _{H2} , L _{H3}] min[3.462, 28.875, 7] 3.462 in

Effective thickness

t_{eff} = t 0.875 in =

Total available area near the nozzle opening

- $\begin{array}{l} min[~(2^{*}R_{n}+t_{n}) \ / \ ((D_{i}+t_{eff})^{*}t_{eff})^{0.5}, \ 10] \\ min[~(2^{*}11 \ + \ 1) \ / \ ((22 \ + \ 0.875)^{*}0.875)^{0.5}, \ 10] \end{array}$ λ = =
 - 5.1409 =
- $t^{*}L_{R}^{*}max[\;(\lambda \:/\:4)\;,\:1]$ A₁ =
 - 0.875*7*max[(5.1409 / 4) , 1] =
 - 0.875*7*1.2852 =
 - 7.8721 in² =
- A_2 =
- t_n*L_H 1*3.462 =
 - 3.462 in² =
- 0.5*L₄₁² A_{41} =
 - 0.5*0.3752 = 0.0703 in² =
- $\begin{array}{l} \mathsf{A}_1 + \mathsf{A}_2 + \mathsf{A}_{41} \\ 7.8721 + 3.462 + 0.0703 \end{array}$ Α_T =
 - =
 - 11.4044 in² =

Forces at nozzle to vessel intersection

 $= P^*R_n^*(L_H - t)$ f_N

- = 877.14*11*(3.462 0.875)
- = 24,960.49 lb_f
- $f_{S} = P^{*}R_{eff}^{*}(L_{R} + t_{n})$
 - = 877.14*11*(7 + 1)
 - = 77,188.44 lb_f
- $f_{Y} = P^* R_{eff}^* R_{nc}$
 - = 877.14*11*11
 - = 106,134.1 lb_f

Average local primary membrane stress

 $\sigma_{\text{avg}} = (f_{\text{N}} + f_{\text{S}} + f_{\text{Y}}) / A_{\text{T}}$ = (24,960.49 + 77,188.44 + 106,134.1) / 11.4044 = 18,263 psi

General primary membrane stress

 $\begin{array}{rcl} \sigma_{circ} &=& P^{*}R_{eff} \ / \ t_{eff} \\ &=& 877.14^{*}11 \ / \ 0.875 \\ &=& 11,027 \ psi \end{array}$

Maximum local primary membrane stress at the nozzle intersection

$$P_{L} = \max[\{2^{*}\sigma_{avg} - \sigma_{circ}\}, \sigma_{circ}]$$

- $= \max[\{2^{*}18, 263 11, 027\}, 11, 027]$
- = <u>25,500</u> psi

Allowable stress

 $S_{allow} = 1.5^*S^*E$ = 1.5*20,000*0.85

= 25,500 psi

 $P_{L} = 25,500 \text{ psi} \le S_{\text{allow}} = 25,500 \text{ psi}$

satisfactory

Maximum allowable pressure

$$\begin{array}{rcl} \mathsf{A}_{\mathsf{p}} & = & \mathsf{R}_{\mathsf{n}}^{\,*}(\mathsf{L}_{\mathsf{H}}^{\,} \cdot \mathsf{t}) + \mathsf{R}_{\mathsf{eff}}^{\,*}(\mathsf{L}_{\mathsf{R}}^{\,} + \mathsf{t}_{\mathsf{n}}^{\,} + \mathsf{R}_{\mathsf{nc}}) \\ & = & (11^{*}(3.462 - 0.875) + 11^{*}(7 + 1 + 11)) \\ & = & 237.4566 \ \mathsf{in}^{2} \end{array}$$

 $\begin{array}{rcl} \mathsf{P}_{max1} = & \mathsf{S}_{allow} \; / \; (2^*\mathsf{A}_{p} \; / \; \mathsf{A}_{\mathsf{T}} \; \text{-} \; \mathsf{R}_{eff} \; / \; t_{eff}) \\ = & 25,500 \; / \; (2^*237.4566 \; / \; 11.4044 \; \text{-} \; 11 \; / \; 0.875) \\ = & 877.1413 \; \text{psi} \end{array}$

P_{max2} = S*(t / R_{eff}) = 20,000*(0.875 / 11) = 1,590.909 psi

$P_{max} = \min[P_{max1}, P_{max2}]$ = min[877.14, 1,590.91]

= 877.1413 psi

Division 2 Part 4.5 Strength of Nozzle Attachment Welds (U-2(g) analysis)

Discontinuity force factor

$$k_{y} = (R_{nc} + t_{n}) / R_{nc}$$

= (11 + 1) / 11
= 1.0909

Weld length resisting discontinuity force

 $\begin{array}{rcl} {L_\tau } & = & \pi \,/\, 2^* ({R_n} + {t_n}) \\ & = & \pi \,/\, 2^* (11 + 1) \\ & = & \underline{18.8496} \text{ in} \end{array}$

Weld throat dimensions

- $L_{41T} = 0.7071*L_{41}$
 - = 0.7071*0.375
 - = <u>0.2652</u> in

Average shear stress in weld

- $f_{welds} = \min[f_{Y}^{*}k_{y}, 1.5^{*}S_{n}^{*}(A_{2} + A_{3})] \\ = \min[106, 134.1^{*}1.0909, 1.5^{*}20,000^{*}(3.462 + 0)]$
 - = <u>103.859</u> lb_f
- $\begin{aligned} \tau &= f_{welds} / \left[L_{\tau}^{*}(0.49^{*}L_{41T} + 0.6^{*}t_{w1} + 0.49^{*}L_{43T}) \right] \\ &= 103,859 / \left[18.8496^{*}(0.49^{*}0.2652 + 0.6^{*}0.875 + 0.49^{*}0) \right] \\ &= \frac{8.413}{100} \, \text{psi} \end{aligned}$

 $\tau = 8,413 \text{ psi} \le S = 20,000 \text{ psi}$

satisfactory

UW-16(c) Weld Check

 $\begin{array}{l} \mbox{Fillet weld: } t_{min} = \mbox{lesser of } 0.75 \mbox{ or } t_n \mbox{ or } t = 0.75 \mbox{ in } \\ t_{c(min)} = \mbox{lesser of } 0.25 \mbox{ or } 0.7^* t_{min} = \mbox{\underline{0.25}} \mbox{ in } \\ t_{c(actual)} = 0.7^* \mbox{Leg} = 0.7^* 0.375 = 0.2625 \mbox{ in } \end{array}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a):	$t_{r1} = 0.4955$ in (E =1)
Wall thickness per UG-45(b)(1):	t _{r2} = 0.5172 in
Wall thickness per UG-16(b):	t _{r3} = 0.0625 in
Standard wall pipe per UG-45(b)(4):	t _{r4} = 0.3281 in
The greater of t _{r2} or t _{r3} :	t _{r5} = 0.5172 in
The lesser of t _{r4} or t _{r5} :	t _{r6} = 0.3281 in

Required per UG-45 is the larger of t_{r1} or $t_{r6} = 0.4955$ in

Available nozzle wall thickness new, $t_n = 0.875*1 = 0.875$ in

The nozzle neck thickness is adequate.

Reinforcement Calculations for External Pressure

Ар	Appendix 1-10 Maximum Local Primary Membrane Stress For Pe = 282.83 psi @ 650 °F The opening is adequately reinforced						UG-45 Nozzle Wall Thickness Summary (in) The nozzle passes UG-45	
P _L (psi)	PL (psi)Sallow (psi)A1 (in2)A2 (in2)A3 (in2)A5 (in2)A welds 						t _{req} (in)	t _{min} (in)
<u>10.353</u>	<u>10.353</u>	<u>6.125</u>	<u>3.462</u>			<u>0.0703</u>	<u>0.6652</u>	0.875

D	Division 2 Part 4.5 Strength of Nozzle Attachment Welds Summary Average Shear Stress in Weld							
ky L _τ L _{41T} L _{42T} L _{43T} f _{welds} τ S Over (in) (in) (in) (in) (in) (in) (ib _f) (psi) (psi)							Over stressed	
1.0909	<u>18.8496</u>	0.2652	0	0	<u>37,333.93</u>	<u>3,024</u>	16,200	No

UW-16 Weld Sizing Summary					
Weld description	Weld description Required weld throat size (in) Actual weld throat size (in) Status				
Nozzle to shell fillet (Leg ₄₁)	<u>0.25</u>	0.2625	weld size is adequate		

Calculations for external pressure 282.83 psi @ 650 °F

Appendix 1-10

Effective radius of the vessel

 $R_{eff} = 0.5*D_i$ = 0.5*22

= 11 in

Limit of reinforcement along the vessel wall

 $L_{R} = 8^{*}t$ = 8^{*}0.875

= 7 in

Limit of reinforcement along the nozzle wall projecting outside the vessel surface

L _{H1}	= = =	t + 0.78 [*] ($R_n^* t_n^{0.5}$ 0.875 + 0.78 [*] (11 [*] 1) ^{0.5} 3.462 in
L _{H2}	= = =	L _{pr1} + t 28 + 0.875 28.875 in
L _{H3}	= = =	8*(t + t _e) 8*(0.875 + 0) 7 in
L _H	= = =	min[L _{H1} , L _{H2} , L _{H3}] min[3.462, 28.875, 7] 3.462 in

Effective thickness

t _{eff}	=	t
011	=	0.875 in

Total available area near the nozzle opening

- λ = 0 (for external pressure design)
- A_1 $t^{*}L_{R}^{*}max[(\lambda / 4), 1]$ =
 - 0.875*7*max[(0/4),1] =
 - 0.875*7*1 =
 - = 6.125 in²
- t_n*L_H 1*3.462 A_2 =
 - =
 - 3.462 in² =
- 0.5*L₄₁² A₄₁ =
 - 0.5*0.3752 =
 - 0.0703 in² =

 $\begin{array}{l} \mathsf{A}_1 + \mathsf{A}_2 + \mathsf{A}_{41} \\ \mathsf{6.125} + \mathsf{3.462} + \mathsf{0.0703} \end{array}$ Α_T = = 9.6573 in² =

Forces at nozzle to vessel intersection

f_N $P^*R_n^*(L_H - t)$ = 282.83*11*(3.462 - 0.875) =

8,048.47 lb_f =

 $= P^*R_{eff}^*(L_R + t_n)$ fs

- 282.83*11*(7 + 1) =
- 24,889.29 lb_f =

= P*R_{eff}*R_{nc} = 282.83*11*11 f_{Y}

34,222.77 lb_f =

Average local primary membrane stress

 σ_{avg} =

- $\begin{array}{l}({\mathfrak f}_{\mathsf N}+{\mathfrak f}_{\mathsf S}+{\mathfrak f}_{\mathsf Y})\,/\,{\mathsf A}_{\mathsf T}\\(8{,}048{.}47+24{,}889{.}29+34{,}222{.}77)\,/\,9{.}6573\end{array}$ =
 - 6,954 psi =

General primary membrane stress

P*R_{eff} / t_{eff} 282.83*11 / 0.875 σ_{circ} = =

3,556 psi =

Maximum local primary membrane stress at the nozzle intersection

$$\mathsf{P}_{\mathsf{L}} = \max[\{2^*\sigma_{\mathsf{avg}} - \sigma_{\mathsf{circ}}\}, \sigma_{\mathsf{circ}}]$$

- max[{2*6,954 3,556} , 3,556] =
 - <u>10.353</u> psi =

Allowable stress

$$S_{allow} = 1.5^* min[S_c, S]$$

= 1.5^* min[6,902, 16,200]

 $P_L = 10,353 \text{ psi} \le S_{\text{allow}} = 10,353 \text{ psi}$

satisfactory

Maximum allowable external pressure

Discontinuity force factor

$$k_{y} = (R_{nc} + t_{n}) / R_{nc}$$

= (11 + 1) / 11
= 1.0909

Weld length resisting discontinuity force

$$L_{\tau} = \frac{\pi / 2^{*}(R_{n} + t_{n})}{\pi / 2^{*}(11 + 1)}$$

= <u>18.8496</u> in

Weld throat dimensions

- $L_{41T} = 0.7071 L_{41}$
 - = 0.7071*0.375
 - = <u>0.2652</u> in

Average shear stress in weld

$$f_{welds} = \min[f_Y^*k_y, 1.5^*S_n^*(A_2 + A_3)]$$

- $= \min[34, 222.77 \times 1.0909, 1.5 \times 16, 200 \times (3.462 + 0)]$
 - = <u>37,333.93</u> lb_f
- $= f_{welds} / [L_{\tau}^{*}(0.49^{*}L_{41T} + 0.6^{*}t_{w1} + 0.49^{*}L_{43T})]$
 - = 37,333.93 / [18.8496*(0.49*0.2652 + 0.6*0.875 + 0.49*0)]

τ

 $\tau = 3,024 \text{ psi} \le S = 16,200 \text{ psi}$

satisfactory

UW-16(c) Weld Check

 $\begin{array}{l} \mbox{Fillet weld: } t_{min} = \mbox{lesser of } 0.75 \mbox{ or } t_n \mbox{ or } t = 0.75 \mbox{ in } t_{c(min)} = \mbox{lesser of } 0.25 \mbox{ or } 0.7^* t_{min} = \mbox{\underline{0.25}} \mbox{ in } t_{c(actual)} = 0.7^* \mbox{Leg} = 0.7^* 0.375 = 0.2625 \mbox{ in } \end{array}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Wall thickness per UG-45(a):	t _{r1} = 0.6652 in
Wall thickness per UG-45(b)(2):	t _{r2} = 0.2081 in
Wall thickness per UG-16(b):	t _{r3} = 0.0625 in

 $\begin{array}{ll} \mbox{Standard wall pipe per UG-45(b)(4):} & t_{r4} = 0.3281 \mbox{ in} \\ \mbox{The greater of } t_{r2} \mbox{ or } t_{r3} \mbox{:} & t_{r5} = 0.2081 \mbox{ in} \\ \mbox{The lesser of } t_{r4} \mbox{ or } t_{r5} \mbox{:} & t_{r6} = 0.2081 \mbox{ in} \\ \end{array}$

Required per UG-45 is the larger of t_{r1} or $t_{r6} = 0.6652$ in

Available nozzle wall thickness new, t_{n} = 0.875^{\ast}1 = 0.875 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 650 °F) UG-28(c)

 $L / D_o = 40 / 24 = 1.6667$ $D_o / t = 24 / 0.6652 = 36.0787$ From table G: A = 0.003732 From table HA-1: B = 7,653 psi

$$P_a = 4^*B / (3^*(D_o / t))$$

- = 4*7653.1895 / (3*(24 / 0.6652))
- = 282.83 psi

Design thickness for external pressure $P_a = 282.83$ psi

 $t_a = t + Corrosion = 0.6652 + 0 = 0.6652"$